СДВИГОВАЯ ТЕКТОНИКА И ВРАЩЕНИЕ БЛОКОВ В ПРЕДЕЛАХ МЕЖРЕЧЕНСКОГО МЕСТОРОЖДЕНИЯ ЛЬВОВСКО-ВОЛЫНСКОГО КАМЕННОУГОЛЬНОГО БАССЕЙНА

Львовско-Вольнянский бассейн (ЛВБ) является вторым по значимости угольным регионом Украины, промышленное освоение которого начато в 50-х годах прошлого столетия. В пределах бассейна, по-прежнему, остаются перспективные участки (например, участок «Великомостовский» № 10 в пределах горного отвода шахты «Степная») для промышленной разработки высококачественного угля. В последние годы исследуемый регион вызывает так же особый интерес в связи с возможностями для промышленного извлечения метана угольных месторождений [1, 2].

Использование геоинформационных технологий для анализа тектонической нарушенности бассейна обусловлено объективно назревшей необходимостью обобщения архивных материалов и данных многолетней документации разрывной тектоники в горных выработках бассейна с целью создания реалистичной модели тектонической эволюции района исследований с последующей интеграцией полученных ГИС компонент в системы управления рациональным и безопасным ведением эксплуатационных работ на глубоких горизонтах бассейна.

Исследованиям тектоники ЛВБ и прилегающих территорий посвящены работы Х. Тейссейре, М. Тетяева, П. Шульги, В. Клушина, В. Куширука, О. Ступки, М. Павлюка, А. Желиховского, В. Ярошевского, И. Бубняка, О. Бубняка.

В геоструктурном отношении территория исследований расположена на юго-западной периферии Восточно-Европейского кратона (рис. 1). ЛВБ входит в состав протяженной структуры Транс-Европейской сутурной зоны (ТЭСЗ) [3], разделяющей докембрийскую литосферу ВЕК с мощной корой и палеозойские-алпийские тонкокоровые мобильные пояса Центральной и Западной Европы.

В приповерхностной области ТЕСЗ перекрыта цепочкой осадочных бассейнов, среди которых выделяются палеозойские прогибы Люблинского и Львовско-Волынского каменноугольных бассейнов, разделенные Кумовской седловиной (см. рис. 1). На фоне общего полого западного падения отложений карбона под углом 2–3° в пределах бассейна наблюдается волноподобный характер залегания каменноугольных отложений в виде разделявших поднятиями брахицинклиналей северо-западного простирания, совпадающего с общей ориентировкой ТЕСЗ. Поднятия в каменноугольных отложениях являются природными границами отдельных месторождений углей в районах Волынской и Забугской моноклиналей, Сокальской, Межреченской, Тягловской и Каровской синкилиналей [4].

На юго-западе рассматриваемая территория граничит с передовым прогибом Карпатской геосинклинали (внешней зоной Предкарпатского прогиба) [5]. Структурный план, как поверхности фундамента, так и осадочного чехла ЛВБ, определяют системы протяженных разрывных нарушений преимущественно северо-западного простирания (Волынский, Межренский, Забугский, Милятинский, Рава-Русский разрывы), которые традиционно интерпретировались как сбросы или вбросы (например, Жужелянский разрыв) [6].

Отмеченная выше система разломов является продолжением главной дислокационной зоны Свентокшискых гор (см. рис. 1), основные разрывы которой интерпретируются как сдвиговые дислокации [7]. Следует отметить, что структурный рисунок разрывных нарушений в угленосной толще Люблинского прогиба так же указывает на существование в этом районе зоны правосдвиговых дислокаций северо-западного или «карпатского» простирания [8, 9] (азимут простирания 315–325°).

В 1968 г. В.А. Куширук выполнил работы по наиболее полному на настоящий момент обобщению тектонической нарушенности ЛВБ [10]. Базируясь на материалах детального геологоразведочного бурения и геологического картирования тектонических разрывов и горно-эксплуатационных выработках, этот специалист опроверг первоначальные представления о простом строении угольного бассейна и представил результаты исследований в виде карты разрывных нарушений (большинство из которых – малоамплитудные сбросы, меньшая часть – надвиги) на участке Межренского месторождения. Впервые был сделан вывод о том, что «тектонические нарушения редко проявляются в виде одной трещины; чаще, они образуют серии или зоны разрывов северо-восточного и северо-западного простирания» [10].

Аналогичные по морфологии зоны малоамплитудных тектонических нарушений задокументированы в угленосной толще Донецкого бассейна и впервые описаны В.С. Поповым как «тектонополосы» [11].

По определению В.А. Привалова [12], тектонополосы представляют собой плитообразные в пространстве, полосовидные в плане, выдержанные по простиранию объемные зоны концентрированного развития малоамплитудной тектоники сдвигового генезиса.

В работах [12–14] установлено, что контрастность тектонополос на окружающем фоне определяется интенсивностью сдвиговых деформаций, а их пространственное положение связано с ориентировкой векторов главных нормальных напряжений, при этом, ось максимальных сжимающих напряжений σ1 занимает положение биссектрисы острых углов 20 = 52…78° (среднее значение 60°) на пересечении сопряженных тектонополос (рис. 2).

В контуре тектонополос развиты различные морфологические типы малоамплитудных нарушений, которые простирание не всегда совпадает с ориентировкой тектонополос, однако по мере приближения к крупным региональным разрывам частота встречи малоамплитудной нарушенности в контуре тектонополос заметно возрастает.
Рис. 2. Гипсометрический план угольного пласта h₈ (Донецко-Макеевский район Донбасса) [13,14].
Сдвиговая тектоника и вращение блоков Межреченского месторождения

На рис. 2 изображен гипсометрический план пласта h_8 в пределах Донецко-
Макеевского района Донбасса, на котором представлены результаты исследований [13, 14]:
пространственного положения и генезиса зон малоамплитудной тектоники (тектонополос),
возникших в условиях сдвижного поля напряжений (поле шх. им. М.И. Калинина - ось
сжатия σ_1: 115...125°, ось растяжения σ_3: 25...35°, σ_2 - субвертикальна; поля шахт им. газеты
«Донбасс» и «Заперевальная» - ось сжатия σ_1: 120...130°, ось растяжения σ_1: 30...40°, σ_2
- вертикальна; поля шх. Глубокая - ось сжатия σ_1: 135...145°, ось растяжения σ_3: 45...55°, σ_2
- вертикальна); кинематика региональных тектонических нарушений, являющихся, главным
образом, взбросо-сдвиговыми формами с преобладанием взбросовой компоненты смещения
(Французский надвиг), сдвиговой компоненты смещения (Калининский, Первомайский,
Мушкетовский разрывы) или практически чистым сдвижным дислокациями (разрывы
Софievский и Приводнис); расчетных оценок интенсивности вращения блоков.

Такой подход успешно применен на территории Донбасса [13, 14], но не нашел
отражения в исследованиях Львовско-Волынского угольного бассейна.

В рамках геотектонической концепции мобилизма, отдельные тектонические плиты
представляют собой тонкие оболочки, перемещающиеся по сравнительно пластичной
астенофере. В результате этих процессов в верхних горизонтах земной коры преобладают
преимущественно сдвижные поля напряжений с субгоризонтальным расположением
главных нормальных напряжений сжатия σ_1 и растяжения σ_3.

Предварительный анализ тектонического рисунка в пределах отдельных въемочных
панелей, наличие субгоризонтальных штрихов скольжения на плоскостях сместителей
разрывных нарушений [10], а также результаты тектонофизического картирования в
пределах прилегающих территорий [7-9] позволяют предположить в пределах ЛВБ
преимущественное развитие деформаций сдвижного характера. Большой объем
разномасштабной исходной горно-графической документации, касающейся разрывной
тектоники: положение сместителей на зарисовках, геологических разрезах и планах горных
работ, - обусловил необходимость применения комплексного подхода к интеграции
разрозненных географических материалов в единую цифровую модель пространственного
расположения тектонических нарушений.

На первом этапе использовались планы горных работ в масштабе 1:5 000 для угольных
пластов n_7^u, n_7^a, n_8, n_8^a в пределах горных отводов шахт: «Червоноградская» № 2,
«Бендюжская», «Великомостовская» № 3, «Межреченская»), «Великомостовская» № 4,
«Возрождение», «Великомостовская» № 5, «Великомостовская» № 10, «Степная»),
входящих в состав Межреченского месторождения. Подготовка растровой основы
включала: сканирование отдельных ориентированных фрагментов планов горных работ с
разрешением 200 dpi, их интеграцию в единое изображение и стандартную калибровку по
крестам координатной сетки в условной системе координат. Так как, планы горных работ
имеют большие размеры (длина более 1,0-1,5 м и ширина порядка 0,7-1,0 м), поэтому их
сканирование производилось отдельными фрагментами размером 21х29 см. Растровые
изображения отдельного плана включали 10-12 фрагментов со взаимным перекрытием.

Векторизация трасс разрывных нарушений, вынесенных на планы горных работ,
проводилась с использование программного продукта «GeoMark» [15] и составила основу
первого тематического слоя. В качестве второго тематического слоя использовалась
информация о деталях строения тектонических зон, полученная с разномасштабных
геологических разрезов и зарисовок. Третий тематический слой содержал, главным образом
атрибутивную информацию: синонимику пласта, тип нарушения, угол падения и азимуты
падения сместителя, амплитуду смещения и общую протяженность диньонктова.

Выбор аппаратных средств обусловлен следующими требованиями к программному
продукту: а) возможностью производить автоматический ввод, оперативное редактирование,
обновление и визуализированную подачу геологической информации по площади (в виде
планов и разрезов); б) реализацией быстрого доступа к базе данных и поиску тематической информации, т.е. классифицировать тектонические нарушения по типу, элементам залегания и протяженностности; в) возможностью экспорта данных для построения расчетных тематических показателей. На втором этапе проводился анализ пространственных закономерностей распространения тектонической нарушенности и условий ее возникновения.

На рис. 3 приведены результаты построения цифровых моделей тектонической нарушенности угольных пластов n_7^b, n_8^b, n_6, n_8^g в пределах горного отвода шахты «Великомосковская» № 5.

Контрастно прослеживаются отдельные тектонические нарушения, группирующиеся в системе сопряженных тектонополос, придающих участку характерные для сдвиговых зон геометрические очертания параллелограммовидных тектонических блоков с величиной остrego угла 20 = 76° с отчетливыми признаками вращения отдельных блоков по часовой стрелке.

Судя по тому, что зоны тектонических нарушений по разным пластам, т.е. на различных гипсометрических уровнях проекционно совпадают: тектонополосы — субвертикальны, а их формирование связано с разломизовой массы плоскостями максимальных касательных напряжений в условиях горизонтального положения главной кинематической плоскости $\sigma_1-\sigma_3$.

Результаты натурных наблюдений в полевых условиях и экспериментальных исследований [16, 17] показывают, что в пределах сдвиговых зон возникают не только параллельные осевой зоне сдвигания Y — сколы, но и сопряженные под углом $\theta = 45^\circ - 2\varphi/2$ (ф — угол внутреннего трения) к оси сжимающих напряжений σ_1 синтетические и антитетические по отношению к осевой сдвиговой зоне сколы Риделя R_1 и R_2. По мере уменьшения сопротивления сдвигу и торможения движений по сколам Риделя R_3, в контуре сдвиговых зон развиваются синтетические P-сколы, которые располагаются симметрично R_1–сколам относительно оси основной сдвиговой зоны, т.е под углом $\phi/2$ к последней. Кроме того, в контуре сдвиговой зоны могут развиваться трещины растрескивания (T) с проистиранием, параллельным оси сжимающих усилий. В случае перекрытия сдвиговой зоны в фундаменте маломощным чехлом, в последнем также развиваются системы сколовых (сдвиговых) дислокаций. При этом направление сдвига вдоль сколов R_4, P, Y — того же направления, что и в разломе фундамента, а в R_2 — противоположное. Все сколы близки к вертикальным. Сколы R_1 и R_2 составляют с основной зоной смещения углы $\phi/2$ и 90° - $\phi/2$.

По мере нарастания сдвиговых деформаций в контуре сдвиговой зоны в чехле над основной сдвиговой зоной в фундаменте может происходить вращение отдельных параллелограммовидных тектонических блоков, сформировавшихся между сопряженными сколами Риделя. Для зон правого сдвига вращение блоков будет происходить по часовой стрелке, для левосдвиговых зон — против часовой стрелки [18, 19].

На рис. 4 представлены результаты картирования трасс разрывных нарушений по пласту n_8^g шахт Межкренского месторождения. Применение геоинформационных технологий позволило получить наиболее целостное представление о геометрических особенностях распространения тектонической нарушенности в пределах исследуемой территории. Ее основными особенностями является наличие параллелограммовидных блоков, образующихся на пересечении протяженных тектонополос наиболее позднего заложения, которые соответствуют современному положению разломов кристаллического фундамента. Последние развиваются в условиях сдвигового поля напряжений ($\sigma_1 : 0 \pm 2^\circ$, $\sigma_2 : 90 \pm 2^\circ$, σ_3 — вертикальна), как сопряженные под углом 20 = 76 ± 2°, сколы Риделя R_1: 322 ± 2°, R_2: 38 ± 2°) и их более ранних ротационных отпечатков r_1 и r_2.

189
Рис. 3. Цифровые модели тектонической нарушенности угольных пластов в пределах горного отвода шахты «Великомостовская» № 5: а - n₁₈, б - n₁₂, в - n₈, г - n₈.
1 – границы шахтного поля и стволы шахты, 2 – речная сеть, 3 – разрывные нарушения, 4 – контуры горных работ по угольным пластам.

Направления подвижек по глубинным разломам, соответствующие наиболее поздней активизации в структуре ЛВБ в режиме зоны правого сдвига на продолжении Свентокшискских дислокаций показаны на рис. 4, а. Следует отметить, что наряду с ротационными отпечатками синтетических и антигетических сколов Риделя (r₁ и r₂), возникших на более ранних этапах деформации, нами зафиксированы соответствующие им по возрасту синтетические P-сколы и трещины растяжения t. Примечательно, что P-сколы и трещины растяжения T практически отсутствуют на современном этапе деформации, что может свидетельствовать о тенденции перехода трансформационного режима развития сдвиговой зоны в транспрессионный. Результаты палеореконструкций ориентировок оси напряжений σ₁ как биссектрисы острого угла 20 на сопряжении синтетических и антигетических сколов Риделя, позволяют констатировать практически субмеридиональную ориентацию вектора сжатия σ₁, который в условиях сдвигового поля напряжений привел к правосдвиговой активизации зоны, в пределах которой находится ЛВБ. При этом по мере развития деформаций правого сдвига в угленосной толще ЛВБ развивалось существенное правое вращение блоков (до 20°) в результате которого в угленосной толще между секторами локального сжатия сформировались складки с 3-C3 (В-ЮВ) ориентировкой осей.
Рис. 4. Результаты картирования и интерпретации трасс разрывных нарушений по пласту n_{eq}^c шахт Межреческого месторождения как зоны правого сдвига на продолжении Свентокшицких дислокаций с правым вращением блоков.

На врезке a) показана модель формирования зон тектонической нарушенности в осадочном чехле (тектонополос), которые соответствуют современному положению глубинных разломов кристаллического фундамента в виде синтетических и антитетических сколов Риделя (R_1 и R_2), синтетических P-сколов и трещин растяжения T, возникших в контуре сдвигаевой зоны, а также тектонополос более раннего заложения r_1, r_2, p, t, представляющих собой ротационные отпечатки разломов фундамента с углами поворота ω от 8 до 20°.

Выводы

1. Продемонстрирована возможность создания пространственной модели тектонической нарушенности на примере Межреческого месторождения ЛВБ с возможностью последующей интеграции полученных ГИС компонент в системы управления рациональным и безопасным ведением эксплуатационных работ на глубоких
Сдвигова тектоніка і вращення блоків Межиреченского месторождения

горизонтах бассейна.

2. Установлены закономерности пространственного положения зон тектонических
нарушений и реконструирован механизм их возникновения в связи с развитием в районе
исследований протяженной зоны правосдвиговых дислокаций северо-западной
ориентировки при субмеридиональном положении оси сжатия \(\sigma_1 \).

3. Разрывные нарушения в угленосной толще ЛВБ представляют собой проекционные
и ротационные отпечатки \(R_1, R_2 \) и \(P \)-сколов (сдвигов) и трещин растижения \(T \),
формирующихся в контуре сдвиговых зон.

4. В процессе сдвиговой деформации зафиксировано вращение отдельных
тектонических блоков с углами 8° и 20°, с эффектами которого следует связывать
формирование вторичной складчатости пластов угленосной толщи.

Литература

1. Липин С.О., Иванцю О.Є., Дудок І.В., Наумко І.М., Кухар З.Я. Закономірності розподілу метану у
кам'яновугільних басейнах України та перспективи його видобутку та використання // Геологія і геохімія

2. Узік В.І., Бік С.І., Ільчишин А.В. Газогенераційний потенціал кам'яновугільних басейнів України //

3. Hippolyte J., Badescu D., Constantin P. Evolution of the migration direction of the Carpathian belt during its

4. Струев М.І., Исаев В.И., Шпакова В.Б. и др. Львовско-Вольнской камменноугольный бассейн. Геолого-

5. Бубяк І., Бубяк А., Кілін І., Попі І. Структурно-седиментологічні дослідження Доброївських
відкладів Передкарпатського прогину // Праці наукового товариства і. Шевченка. Геологічний збірник. – Т.

10. Кущинрук В.А. Геологическое строение и тектонические особенности Львовско-Вольнского

11. Попов В.С. Маломощные разрывы нарушения в угольных пластиах Донецко-Макеевского геолого-

12. Привалов В.А. О прогибах тектоногазодинамической обстановки угольного пласта.// Изв. высш. уч.

13. Привалов В.А. Закономерности развития маломощной тектонической нарушенности угольных
пластов и ее прогнозирование (на примере Донецко-Макеевского района Донбасса). Автореф. дис... канд.

14. Привалов В.А. Закономерности распространения и эволюции тектонической нарушенности в Донецко-

15. Глухов О.О. Проблеми і принципи проектування геоінформаційних систем // Геоінформатика.- 2002. - №1-
С. 89-94.

1990. – 451 р.

19. Привалов В.А. Вращение блоков и сценарий тектонической эволюции Донецкого бассейна // Геологія і

© Дьяченко Н. А., Привалов В. А., Панова Е. А., 2007

192