ОСОБЕННОСТИ СОВМЕСТНОЙ УТИЛИЗАЦИИ НИКЕЛЬ-КАДМИЕВЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ И КОРРОЛЬКОВ МЕТАЛЛА

КАРПОВ В.П. (ОАО КОНСТАНТИНОВСКИЙ ЗАВОД «ВТОРМЕТ»), СОКОЛОВ В.М. (ФИЗИКО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ МЕТАЛЛОВ И СПЛАВОВ НАН УКРАИНЫ), ОМЕЛЬЧЕНКО В.И. (ОАО КОНСТАНТИНОВСКИЙ ЗАВОД «ВТОРМЕТ»)

Обсуждены пути утилизации отработанных никель-кадмиевых аккумуляторных батарей. Разработан балансовый метод определения количества никеля, содержащегося в положительных пластинах. Проанализированы возможности переработки отвальных шаков с целью извлечения никеле содержащих корольков металла. Проведена опытная плавка с использованием в шихте положительных пластин и корольков металла.

В последние десять лет в мире наблюдается большой рост использования никель-кадмиевых аккумуляторных батарей. Общезвестны экологические проблемы, связанные с утилизацией такого вида материалов, содержащих кадмий — элемент, небезопасный для здоровья человека. В электронике, связи, железнодорожном транспорте, авиации, энергетике обычно используют вентильные никель-кадмиевые аккумуляторы. Следует заметить, что все эти отрасли промышленности широко распространены в Украине. Прогнозы показывают, что в дальнейшем применение данного вида источников питания будет значительно возрастать. Несмотря на то, что в настоящее время отработанные никель-кадмиевые аккумуляторы встречаются достаточно редко, проблема их переработки встанет перед промышленностью Украины в ближайшем будущем. Поэтому в данной работе проведен анализ возможности переработки данного вида перспективного сырья.

Утилизация отработанных вентильных никель-кадмиевых аккумуляторов имеет определенные проблемы даже в промышленно развитых странах. Технологии их переработки подробно в литературе не описаны. Известно только, что они основываются на пирометаллургических принципах. Предприятия по переработке таких отходов расположены в Швеции, Франции, США и Японии — странах достаточно далеко расположенных географически от Украины. Таким образом мы не можем рассчитывать на использование производственных мощностей зарубежных переработчиков, а будем вынуждены опираться на свои возможности.

Особенность переработки состоит в том, что их переплавлять можно только положительные пластины. Отрицательные кадмий- содержащие пластины рационально перерабатывать отдельно пирометаллургическими методами [1].

Так как отработанные кадмий-никелевые аккумуляторные батареи нельзя плавить в ДСП без разборки, как это делают для железоникелевых [2], то необходимо было разработать методику определения количества никеля, содержащегося в них. В таком случае предложено делать материальный баланс с помощью экспериментальных плавок на портативной печи УП-159А.

Данная печь относится к широко распространенному в Украине классу печей ЭШП и ЭПТП. Основным предназначением данной печи является электрошлаковое литье, принципы которого были разработаны украинской школой металлургов в 60–70-х годах [3]. В данной работе использовали одно из основных положительных качеств такого оборудования — возможность переплава некомплектного сырья с минимальными потерями содержащихся в нем полезных компонентов. Печь УП-159А
Особенности совместной утилизации никель-кадмийевых...

идельно подходит для балансовых плавок аккумуляторных пластин. Так как время подготовки установки к пуску составляет всего 1 сутки, то представляется целесообразным способом затратителей аккумуляторного лома для данного оборудования. Предполагается его временное размещение в местах скопления такого рода отходов с целью проведения балансовых плавок.

Нами были проведены опытные балансовые плавки импортных отработанных кадмий-никелевых аккумуляторов марок NKT-160 и KPL-160. Для первой плавки были разобраны несколько положительных пластин кадмий-никелевых аккумуляторов до 15-20 ламелей. Плавку вели графитовым электродом. После наведения в печь шлака (70% Al₂O₃, 30% CaO) в плавильное пространство начали подавать ламели. Когда сплавили определенное число ламелей, стало невозможным вести нормальный процесс плавки, поскольку нельзя было подвести необходимую мощность из-за вскипания шлака.

Для проведения следующей плавки было решено блоки положительных пластин сварить в расходный электрод. Эту плавку проводили на двух блоках с одной общей массой 5,5 кг. Для более спокойного ведения процесса в шлак добавляли около 20% битого стекла. В итоге получили 3,4 кг металла. Таким же образом для сравнения была проведена плавка с использованием блока отечественного аккумулятора ТЖН-460. Результаты балансовых плавок показаны в таблице 1.

Так как по данным работы [4] содержание NiO в шлаках и пыли отходящих газов при плавке никельсодержащего сырья незначительно и колеблется в пределах 0,2–0,4%, то этот фактор в учет не принимается. Не учтенные потери компенсируются дополнительным никелем из составляющих батарей, не входящих в пластины.

Таблица 1 — Результаты балансовых плавок

| Марка аккумулятора | Масса сплавленного материала, кг | Масса полученного металла, кг | Содержание Ni в полученном металле, % | Масса Ni, кг | Содержание никеля в аккумуляторах, г/А·ч
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KPL-160</td>
<td>5,2</td>
<td>3,3</td>
<td>26,5</td>
<td>0,87</td>
<td>2,73</td>
</tr>
<tr>
<td>NKT-160</td>
<td>5,5</td>
<td>3,4</td>
<td>27</td>
<td>0,918</td>
<td>2,86</td>
</tr>
<tr>
<td>ТЖН-400</td>
<td>6,2</td>
<td>4,6</td>
<td>27,7</td>
<td>1,274</td>
<td>3,19</td>
</tr>
</tbody>
</table>

В производственных условиях Константиновского завода «Втормет» на дуговой сталелитейной печи DC-5, оборудованной специальными приспособлениями для плавки небольшой навеской шихты, были проведены эксперименты с использованием положительных пластин аккумуляторных батарей. Результаты приведены в таблице 2. Анализ плавок № 1, которая была выполнена на 100% положительных пластин аккумуляторного лома, что стало возможным в результате применения грейферного захвата для утратчивов шихты, а также № 2 и 3, в которых, наряду с положительными пластинами, использовали богатую никелем конверсионное вторичное сырье, показывают на неэффективность окислов никеля как окислителя, т.к. содержание углерода в ферроникеле 1,5–2,5%, что на несколько порядков выше, чем при плавке не разобраных аккумуляторов. Таким образом, нами установлено, что только окись железа из отрицательных пластин являются эффективными окислителями. Ранее считалось, что окись никеля, входящие в состав положительных пластин, являются эффективными окислителями при плавке [5]. В действительности при нагреве шихты в основном происходит разложение гидроокислов — окислов никеля по реакции: Ni(OH)₂=Ni+O₂+H₂.

145
Таким образом положительные пластинки вносят в расплав только Ni, и не могут существенно использоваться для окисления. Такое впервые установленное свойство данного вида сырья нашло применение в технологии совместного переплава корролков легированных никельсодержащих и низколегированных марок сталей, извлеченных из отвальных шлаков металлургических заводов.

Таблица 2 — Результаты плавок с использованием в шихте положительных пластин

<table>
<thead>
<tr>
<th>Номер плавки</th>
<th>Содержание химических элементов, % масс. дол.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cr</td>
</tr>
<tr>
<td>1</td>
<td>нет</td>
</tr>
<tr>
<td>2</td>
<td>1,77</td>
</tr>
<tr>
<td>3</td>
<td>0,38</td>
</tr>
</tbody>
</table>

Нами была изучена возможность переработки отвального шлака, содержащего корролки различного состава. Опытную партию, состоящую из 15 тонн, отправили на Мариупольский завод «Азовстал», где имеется стандартное оборудование по переработке отвальных шлаков. Шлаки обрабатывали на цикловой дробилке типа СМ-16Д производительностью 340 м³/час. Там его дробили на фракции 40—120 мм, 20—40 мм и до 20 мм. После каждого размola шлаки подвергали магнитной сепарации, отделяя при этом корролки низколегированной стали, которые притягиваются магнитом. Затем метал обрабатывали с помощью пневмоклассификатора для удаления шлаковой составляющей. Общий вес отсепарированных корролков составил 474 кг, в том числе немагнитная и слабомагнитная составляющие, которые не отсепарировались, имели вес около 210 кг. Таким образом общее содержание металлических корролков составляет 3,16%, в том числе немагнитная и слабомагнитная составляющие — 1,40%, а магнитная — 1,76%.

Однако не все корролки фракции, которая не притягивается магнитом по своему химическому составу относится к коррозионностойким никельсодержащим маркам сталей. Следует учесть, что безникеевые марганцовистые марки сталей типа стали Гатфильда также не притягиваются магнитом. Таким образом даже после переплава слабомагнитных корролков возможно некоторое «разубоживание» расплава по никелю.

На экспериментальной дуговой сталеплавильной печи была проведена плавка с использованием в качестве шихтовых материалов 120 кг ферроникелевой лигатуры, содержащей 9% Cr и 7% Ni, 90 кг положительных пластин с содержанием никеля 8,5% и 474 кг корролков металла, полученного из шлакового отвала путем вышеперечисленной переработки на заводе «Азовстал». Причем, аккумуляторный лом вводили после наведения жидкой ванны. Было получено 592 кг металла. Для установления величины безвозвратных потерь хрома и никеля со шлаком был проведен его химический анализ по расплавлению исходной шихты и после введения в печь положительных пластин. Результаты химического анализа продуктов плавки приведены в таблице 3. Из таблицы видно, что содержание хрома в шлаке по ходу плавки остается постоянным, что свидетельствует об отсутствии его потерь в ходе введения аккумуляторов лома.

Высокое содержание хрома в шлаке связано с наличием в составе шихты корролков металла, с которыми находится не отделяющиеся в результате обработки в пневмоклассификаторе частицы шлаковой фазы окислительного периода плавки коррозионностойких марок сталей. Наблюдается хорошее соответствие полученных
результатов данных французских исследователей [4], которые установили, что содержание NiO в шлаках и пыли, образующихся при плавке данных марок стали, составляет 0,2—0,4%, а Cr₂O₃ — 2,6%.

Таблица 3 — Результаты совместной плавки корольков металла с аккумуляторным ломом

<table>
<thead>
<tr>
<th>Аналитируемый материал</th>
<th>Содержание элементов, % масс. дол.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ni</td>
</tr>
<tr>
<td>Конечный металл</td>
<td>17,14</td>
</tr>
<tr>
<td>Начальный шлак</td>
<td>0,29</td>
</tr>
<tr>
<td>Конечный шлак</td>
<td>0,35</td>
</tr>
</tbody>
</table>

Таким образом подтверждено, что положительные пластины вентиляных никель-кадиевщих аккумуляторных батарей является перспективным источником никельсодержащего сырья. Портативная установка ЭШПП 1ВШ159А может быть эффективно использована для определения количества никеля, содержащегося в положительных пластинах.

Выведено, что положительные пластины не являются источником окисления при переплавных процессах. Установлено, что в шлаковых отвалах электрометаллургических производств, производящих никельсодержащая марки сталей, содержится примерно одинаковое количество корольков легированных и нелегированных сталей. Проведенная совместная плавка корольков, извлеченных из шлака, и положительных пластина показала эффективность такой шихтовки.

Список литературы

© Карпов В.П., Соколов В.М., Омельченко В.И., 1999.