Электронный архив
Донецкого национального технического университета (г.Донецк)
Electronic archive of Donetsk national technical university (Donetsk)
 

eaDonNTU, Donetsk >
Научные труды ДонНТУ >
Серія: Інформатика, кібернетика та обчислювальна техніка >
Випуск 9 (132) >

Please use this identifier to cite or link to this item: http://ea.donntu.org/handle/123456789/8131

Title: Дискретизация функционально заданных поверхностей
Other Titles: Functionally-defined surface discretization
Authors: Вяткин, С.И.
Keywords: дискретизация
функционально заданные поверхности
геометрические 3-х мерные модели
Issue Date: 4-Jul-2008
Publisher: Донецкий национальный технический университет
Citation: Вяткин С.И. Дискретизация функционально заданных поверхностей// Наукові праці Донецького національного технічного університету, серія «Інформатика, кібернетика та обчислювальна техніка»,вып. 9 (132), Донецк, ДонНТУ, 2008. – С.137-145.
Abstract: Surface discretization (triangulation) is a well- known topic of computational geometry. A triangulation of a set of points is a way of connecting them to form a simple triangle. The existing algorithms of triangulation differ in terms of their computational complexity, the frequency of the function evaluation (sampling), and the resulting mesh quality. High efficiency of a triangulation algorithm can be achieved by the use of optimization techniques, which can reduce the complexity of the basic algorithm. A new approach for accurate triangulation of functionally defined surfaces using perturbation functions is proposed. For analyzing how close the evolving meshes approaches the functionally defined surface two error metrics and uniformity are used. The metrics measure deviations of the vertices from the functionally defined surface and deviations of mesh normal from the normal of the functionally defined surface.
URI: http://ea.donntu.edu.ua/handle/123456789/8131
ISSN: 1996-1588
Appears in Collections:Випуск 9 (132)

Files in This Item:

File Description SizeFormat
08vsyfzp.pdf337.02 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.